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Abstract

Economic losses resulting from occupational accidents cause many researchers and policy mak-
ers to be interested in this issue. It is important to present effective mathematical methods
as well as conventional statistical methods in the analysis of categorical occupational accident
data. In this study, a mathematical method about edge estimation on a social network created
with hyper-graphs for work accident analysis and prediction is presented. This method treats
the process of the random walker evolving on the network with distributed order fractional
derivative. The study was carried out numerical calculations in the years 2013–2014 in the
dataset occupational accidents occurred in Turkey. The results obtained on a sample give
prediction of possible occupational accidents characteristics.
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1 Introduction

Occupational accidents that occur globally every year cause economic losses such as injuries, deaths,
material and environmental damages. Therefore, the analysis and prediction of occupational ac-
cidents are important for both safety managers and policy makers. There are several approaches
to the prediction and analysis of occupational accidents, such as traditional statistical analysis
[1, 2, 3], questionnaire-based qualitative analysis [4, 5, 6], data-driven machine learning [7, 8, 9],
and structured data analysis [10, 11, 12].

Apart from the results of the methods used in the analysis of occupational accidents, the main
purpose of this study is to try to predict occupational accidents with the discovery of unforeseen and
unexpected new structures. Standard occupational accident approaches all ignore the uncertainty
of accidents. Mathematically, uncertainty is studied with fundamental theories such as hypergraph
theory, fuzzy set theory, rough set theory, and soft set theory [13, 14, 15, 16]. Such soft computing
approaches in occupational accident data have yielded effective results in determining the factors
affecting occupational accidents [17].

Many factors affect the occurrence of work accidents. Some of these can be listed as carelessness
of human behavior, inexperience at work, insufficient training in safety, unsafe conditions and
psychological state of workers. Occupational accident data are vectors that contain descriptive
information such as the number of injured people, the environment where the accident occurred,
the age of the worker, the marital status of the worker, the level of education, the number of working
days of the worker, and the number of days lost as a result of the accident. It is more difficult to
deal with categorical variables than with continuous variables. For this reason, graphs are used as
a structural data analysis approach in our study.
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In mathematics, a combinatorial network representing social relations between a specific group is
called a social network. Within an organization of individuals, social network structure encodes the
interaction amongst members. Recently, social network approaches have been studied intensively
in order to characterize occupational accidents [18, 19, 20, 21, 22]. The idea behind this approach is
that workers in the same job sector are affected positively or negatively by other workers. When a
sector’s social network is established, it is possible to determine the most effective individuals in the
communication process in this network with various mathematical and statistical measurements.
In this study, we first present a hypergaph formation method for structured occupational accidents
data. This method uses parametrization of each category. Then we perform link prediction process
on the filtration of simple graph embedding of such hypergraphs. The link prediction model we
present is a novel approach and uses fractional evolution of random walker in a network. Fractional
calculus is generalization of integer order operations to fractional ones. In fractional derivative a
memory function is employed. Then, by using similarity, we determine the possible occupational
accidents.

The paper is organized as follows: Section 2 is presented as two parts. In first part, Section
2.1, we present basic of hypergraphs and link prediction. Also, two different graph embeddings of
hypergraphs are given. In second part, Section 2.2, we introduce novel link prediction algorithm
by considering the fractional evolution of a random walker on a graph. In this section, we give
details how the memory function is employed. Moreover, a numerical scheme for solving such link
prediction problem is presented. In Section 3, we give detailed computational results on 20132014
Occupational Accidents Data of Turkey. Finally, in Section 4, we present detailed discussion and
conclusions.

2 Method

2.1 Hypernetworks and edge prediction

A natural way to express structural data sets is using graphs composed of vertices and edges.
In mathematics, hypergraphs are the generalization of the graph structure in such way that al-
lowing edges contain more than two vertices, and they are explicit data structure to represent
hypernetworks. In last decades, hypergraphs and their applications have been studied extensively
[23, 24, 25, 26]. In particular, a hypergraph H = (V,E) is consisting of tuple where V is set of
vertices and E is set of hyper-edges. Each hyper-edge e ∈ E may contain arbitrarily many vertices.
Hence, e ⊂ PV . This definition of a hypergraph lead us to conclude that a hypergraph can be
considered as a set system. If the elements of e ∈ E do not have any order, then we say that H is
an undirected hypergraph. Throughout this study, we only consider undirected hypergraphs. For
more detailed definitions and theorems on directed and undirected hypergraphs, we refer readers
to [27]. We also need to note that, an undirected simple graph is a special case for a hypergraph in
which the size of an edge is restricted to two. Since hypergraphs are the generalization of simple
graphs, they encode higher order relations on data sets.

In order to determine hypergraph statistics, we need more definitions such as degrees. The
degree distributions are strong indicators on network analysis. Since there is no restriction on a
hyperedge cardinality, we can define two type of degrees and their distributions on hypernetworks.
In a hypergraph H = (V,E); the degree dV (v) of v ∈ V is the number of hyper-edges containing v,
whereas the degree dE(e) of a hyper-edge e ∈ E can be defined as the number of vertices belongs
to e. By counting how many vertices and edges have each degree, we can form the vertex degree
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distribution PdV (v)(k), defined by

PdV (v)(k) = fraction of vertices in H with the degree k (2.1)

and the hyperedge degree distribution PdE(e)(k), defined by

PdE(e)(k) = fraction of hyperedges in H with the degree k. (2.2)

We refer readers to [28] for more details on degree distributions for hypergraphs. For a hypergraph
H = (V,E), the sequence of vertices and hyper-edges

v1, e1, v2, e2, . . . , vk−1, ek, vk

is called a hyper-walk between the vertices v1, vk ∈ V for 1 ≤ i ≤ k − 1.
In a hypergraph setting, there are several hyper-edge prediction measures used in literature.

Let N(v) denote the set of neighbours of v ∈ V in H(V,E). If C is all the set of absent hyper-edges
in H, then we use the following features for each possible hyper-edge candidate for c ∈ C with the
score function x as

1. Common Neighbours (CN) [29] : x(c) =
⋂
vi⊆c

N(vi)

2. Jaccard Coefficient (JC) [30]: x(c) =

⋂
vi⊆cN(vi)⋃
vi⊆cN(vi)

3. Adamic-Adar Index (AA) [31]: x(c) =
∑

vj∈
⋂

vi⊆cN(vi)

1

log |N(vj)|

4. Katz Index (KI) [29]:

∞∑
k=1

βk
∣∣L<k>ij ,

∣∣, where L<k>ij is the set of all hyper-walks with length k

connecting vi and vj , and β is a free parameter.

With the expansion of the usage disciplines of simple graph theory, many algorithms are defined
on these structures. Although hypergraphs contain higher order information that simple graphs
cannot encode, it can be said that technical and methodological developments on hypergraph theory
are not as remarkable as simple graph theory. There are several methods for embedding high-
order relationship information contained in hypergraphs into simple graphs. The most common
embedding method is to bipartite graphs which are subclasses of simple graphs such that the
set of vertices decomposed into two disjoint sets in a way that none of two vertices are within
the same set are adjacent [27]. For a hypergraph H = (V,E), its bipartite graph representation
GB = (V1∪V2, EB) is tuple with V1 = V , V2 = E, and EB is the set of dyadic relations of hyper-edge
inclusions. The second embedding method we mention in this study is related to the connectivity
of the vertices through hyper-edges. Let H = (V,E) be a hypergraph. Since each ei ∈ E involves
arbitrarily many vertices, there exist such a simple graph GCi = (ei, ECi) such that each vertices
in ei are adjacent. Therefore, the Boolean sum of GC = GC1

⊕
· · ·
⊕
GCm emerges as a simple

graph representation of H regrading to hyper-connectivity of vertices [32].
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In Figure 1, we present an example for a hypergraph and its simple graph representations. In this
example, the hypergraph H = (V,E) is given with edge sets as e1 = {v1, v2, v5, v6}, e2 = {v6, v8, v9},
e3 = {v2, v3, v4}, and e4 = {v7, v10}, where V = {v1, v2, . . . , v10}. The bipartite embedding of H
is a simple graph GB with the vertex set VB = V ∪ E and the elements of EB are formed by
inclusion. Moreover, the embedding of H regarding to hyper-connectivity of vertices is a simple
graph GC = GC1

⊕
· · ·
⊕
GC4 .
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Figure 1. Hypergraph H = (V,E) is on the left, the simple graph GB = (VB , EB) in in the
middle, and the simple graph GC = (V,EC) is on the right

While performing edge prediction task on H = (V,E), the indices CN , JC, AA, and KI give
the score of the hyper-edge tendency to be included in E. In order to keep bipartite topology
of GB embedding of H, such task should be performed as edges included in between ei and vj .
Otherwise, the topology of H will change by emerging multi-hyperedges or loops in vertices. The
motivation behind the GC embedding of H is representing the hypergraph structure as a clique-
complex. Hence, as the predicted hyper-edges being included in E, the updated embedding will still
remain as a clique complex. However, such complexes are not regular. Therefore, the hyper-edge
prediction on H becomes clique prediction process on GC .

2.2 Communicability centrality with distributed power-law memory

In network analysis, centrality of a vertex is and indicator which measure importance of a vertex
in a network [33, 34, 35]. There are several centrality measures in literature that are used for
different purposes. In a network, an important quantity for determining communication centrality
of a vertex is the communicability function [36, 37], defined by for vertices i and j as

Commij =

∞∑
k=0

Akij
k!

= exp(A)ij =

|V |∑
µ=1

exp(λn)ϕµ(i)ϕµ(j), (2.3)

where A is the adjacency matrix of the network represented by G = (V,E) and right-hand side
emerges from the spectral decomposition of each term of the Taylor expansion of Akij .

The communicability function defined in 2.3 can be visualized in different way. Now, let us
consider a random-walker distribution on G described with ~ϕ(t), where t is the variable of time.
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Then, the matrix differential equation

d~ϕ(t)

dt
= A~ϕ(t) (2.4)

gives the time evaluation of the random-walker ~ϕ(t). The analytical solution of the Equation 2.4 is
~ϕ(t) = exp(At)~ϕ(0). Hence, exp(A) is the time evolution operator.

In a social network, the evaluation of a random walker can be affected from regulations done
by institutions. Hence, we need to include memory of a random-walker evaluating on G. Now, let
us assume that the endogenous variable Y (t) is dependent on the history of the change of ~ϕ(τ) in
G for τ ∈ [0, t]. Then, the endogenous variable can be defined by

Y (t) =

∫ t

0

M(t, τ)~ϕ(τ)dτ, (2.5)

where M(t, τ) is the kernel of the Volterra type operator and called the memory function. Further-
more, if we assume homogeneity in time, then

∂M(t, τ)

∂t
+
∂M(t, τ)

∂τ
= 0. (2.6)

The solution of the Equation 2.6 is M(t, τ) = M(t− τ).
In this study, we assume that the evaluation of the random-walker has power-law fading memory;

that is,

M(t, τ) =
1

Γ(n− α)

m

(t− τ)α−n+1
, (2.7)

where α > 0 is the power-law fading parameter, m(α) ∈ R, n = JαK + 1, and Γ is the Gamma-
function.

If we substitute memory function given in Equation 2.7 into the Equation 2.5, then the endoge-
nous variable Y (t) becomes

Y (t) = m
(
Dα

0+~ϕ(t)
)

(2.8)

with

Dα
0+~ϕ(t) =

1

Γ(n− α)

∫ t

0

~ϕ(n)(τ)dτ

(t− τ)α−n+1
, (2.9)

where ~ϕ(n)(τ) =
∂n~ϕ

∂τn
. The Equation 2.9 is called left-sided Caputo fractional derivative of ~ϕ(t).

The memory function we employ into the evaluation process of a random-walker makes the
walker remember recent historical changes. However, such memory can not be the same for each
step of the evaluation in social systems. Hence, if we distribute α parameter on time interval, with
the cumulative distribution function p(α) let us to have the memory function as

M(t− τ) =

∫ 1

0

p(α)(t− τ)n−α−1

Γ(α− n)
dα. (2.10)

Then, it is possible to define Caputo fractional derivative of distributed order on [0, 1] as

D
[0,1]
0+ ~ϕ(t) =

∫ 1

0

p(α)Dα
0+~ϕ(t) dα, (2.11)
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where
∫ 1

0
p(α) dα = 0. Therefore, the evaluation of the random-walker with distributed order

power-law memory emerges as

D
[0,1]
0+ ~ϕ(t) = A~ϕ(t). (2.12)

The solution of the Equation 2.12 yields us to obtain random-walker distribution on G with
adjacency matrix A. Then, it is possible to determine communicability centrality with distributed
power-law memory of a particular vertex. Since the solution of the Equation 2.12 directly varies
respect to the definition of p(α), we present a fast discretization scheme for the numerical solu-
tion. The numerical solution respect to finite differences of distributed order fractional differential
equations are intensively studied in [38, 39, 40, 41, 42].

The communicability centrality with distributed power-law memory of a particular vertex de-
pends on the ij-th entity of the vector ~ϕ(t). Since the matrix A encodes the neighborhood data on
G, the ij-th of the vector ~ϕ(t) satisfies

D
[0,1]
0+ ~ϕij(t) = Aij ~ϕij(t). (2.13)

Now, let us obtain the numerical solution of the distributed order equation 2.13. In order to obtain
discretization scheme, we discretize the interval [0, 1], in which the order α is changing and ∆αk
are the grid steps. We shall note that such discretization does not need to be equidistant; however,
in this study, we give the discretization scheme respect to equidistant grid steps. Then we have

D
[0,1]
0+ ~ϕij(t) = p(α)Dα

0+ ~ϕij(t) dα

≈
n∑
k=1

p(αk)
(
Dα

0+ ~ϕij(t)
)

∆αk. (2.14)

In [43], approximation to the right-sided Caputo derivatives are given with a matrix

Fαn =
1

τα



ωα0 0 0 0 · · · 0
ωα1 ωα0 0 0 · · · 0
ωα2 ωα1 ωα0 0 · · · 0
. . .

. . .
. . .

. . .
...

...

ωαn−1
. . . ωα2 ωα1 ωα0 0

ωαn ωαn−1
. . . ωα2 ωα1 ωα0


, (2.15)

where t = jτ , j = 0, 1, . . . , n, and

ωαj = (−1)j
(
α

j

)
.

By employing the matrix given in Equation 2.15 and the approximation given in Equation 2.14, we
can have the discretized scheme for the Equation 2.13 as

n∑
k=1

p(αk)Fαn ∆αk = Aij ~ϕij . (2.16)
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Then, the solution of Equation 2.16 is n× n-matrix

ϕ̂ =

n∑
k=1

p(αk)∆αkA
∗Fαn , (2.17)

where A∗ is Moore-Penrose matrix of the adjacency matrix.

3 Results on occupational accident data of Turkey

3.1 Data and network construction

In this study, the raw data of occupational accidents occurred in Turkey in 2013–2014 are used.
Turkish Social Security Agency (SGK) has permitted to be shared the raw data with an official per-
mission of number 99604924/910/4422955 and date 27/08/2015. The entries containing missing in-
formation were cleared from the raw data and then 432090 pieces of data were obtained. The sample
data set is randomly chosen to be 10000 to perform analyses. In the selection of the sample data set,
18 sectors with the highest number of occupational accidents were selected. The selected sectors are
expressed in 4-digit NACE codes in this study. The web-site ”https://opendata.eulerhermes.com”
is referred to the readers for relevant explanations of the sectors and NACE codes.

The entries of occupational accident information are taken as Number of Working Days, Age,
Gender, Marital Status, Loss of Work Days, Vocational Education, Occupational Safety Training,
Education Status, Number of Persons in Accident. In [44], authors briefly introduced a network
formation method for similar data set by using similarity of each data entry. Their method also
includes the information about the place of the occupational accident. In this study, we follow a
novel way to determine hypernetwork structure. First, data sets for each NACE code are divided
into subgroups. Different parameters used when dividing into subgroups are given in Table 1.

Number of Working Days (t ≡ days)

0 ≤ t < 400 400 ≤ t < 1000 1000 ≤ t < 2000 2000 ≤ t < 3000 3000 ≤ t < 4000 t ≥ 400

Age (t ≡ years)

18 ≤ t < 25 25 ≤ t < 30 30 ≤ t < 35 35 ≤ t < 40 40 ≤ t < 45 t ≥ 45

Working Days Loss (t ≡ days)

0 ≤ t ≤ 1 1 < t ≤ 3 3 ≤ t < 5 5 ≤ t < 8 8 ≤ t < 10 t ≥ 10

Number of Persons in the Accident

1 1-3 >3

Educational Status

Elementary School Secondary School High School University / Graduate

Gender

Male Female

Martial Status

Married Bachelor / Bachelorette Other

Vocational Training

Yes No

Occupational Safety Education

Yes No

Table 1. The parameters list for network formation
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The hypernetwork representation of each NACE sector data is composed of hyper-edges which
are parameters for sub-grouping, and occupational accidents as vertex set. Then, a weighted simple-
graph representation GC is used for link prediction procedure.

3.2 Computational results

In this section, we first present the results of hypernetworks of each NACE sector data. Hyper-edge
distributions are presented in Figure 2 and vertex degree distributions of respect GB . are presented
in Figure 3.

From the distributions of H and GB , it is straightforward that the GC representations of H
of each NACE sector which encode the connectivity of agents in complex environment emerge as
complete graphs. Complete graphs are combinatorial objects in which every pair of distinct vertices
is connected by a unique edge. Hence, link prediction on GC will be a null operation. However,
this property assure us about the hypothesis of this study which depends on the information flow
amongst agents in context of occupational accidents. In order to perform link prediction, we need to
filter each GC by using very known method called minimum spanning trees. A minimum spanning
tree (MST ) filtration of GC is a subgraph that connects all the vertices together, without any
cycles and with the minimum possible total edge weight. In this study, for the weighting scheme,
we follow the cosine similarity within each NACE sector data set. Then, the link prediction process
is applied to MST structure. The higher similarity scores on MST measures the highest possibility
of occupational accident to appear.

In order to explain this filtration process, let us consider “Repair of electrical equipment” sector
with NACE code 3314. The sample size of this data set is 156. Its distance matrix based on cosine
similarity and MST filtration which can be considered as hierarchical clustering are given in Figure
4.

In order to perform link prediction on MST filtrations of GC graphs, we use novel similarity
measure communicability centrality with distributed power-law fading as explained in Section 2.2.
The solution method described in Equation 2.17 has discretized scheme with n-steps. Since Aij
denotes the adjacency matrix of MST , we consider n to be equal to size of the vertex set of MST .
Moreover, the adjacency matrices of MST s are sparse. Therefore, in order to guarantee the numer-
ical solution of Equation 2.13, we use Moore-Penrose inverse of Aij . Besides, as the random walker
decisions affected by the institutional regulations, the distribution of those regulations amongst
agent are considered in two ways, namely normal and logistic distributions. In normal distribution
case, the random walker’s power-law fading memory is distributed without making strong assump-
tions. However, in later case which is logistic distribution, the power-law fading memory of random
walker is distributed respect to that agents have also a learning process. In this present study,
we perform our analyses minimally affected by the diffusion process, that is we only consider the
fractional order differentiation to be α = 0.5. In Figures 5–24, we present the numerical solution
of Equation 2.13 for each NACE sectors, with different distributions and α = 0.5.
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Figure 2. Hyper-edge degree distributions of each NACE sector.
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Figure 3. Vertex degree distributions of bipartite graphs GB of each NACE sector.
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Figure 5. Distributed order communicability matrix of NACE sector 3314 with respect to Normal
and Logistic distributions with order α = 0.5
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Figure 6. Distributed order communicability matrix of NACE sector 3513 with respect to Normal
and Logistic distributions with order α = 0.5
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Figure 7. Distributed order communicability matrix of NACE sector 3811 with respect to Normal
and Logistic distributions with order α = 0.5
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Figure 8. Distributed order communicability matrix of NACE sector 4323 with respect to Normal
and Logistic distributions with order α = 0.5
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Figure 9. Distributed order communicability matrix of NACE sector 4711 with respect to Normal
and Logistic distributions with order α = 0.5

Normal Distribution Logistic Distribution

20 40 60 80

20

40

60

80

20 40 60 80

20

40

60

80

0

9

19

28

38

47

20 40 60 80

20

40

60

80

20 40 60 80

20

40

60

80

0

9

19

28

38

47

Figure 10. Distributed order communicability matrix of NACE sector 4719 with respect to
Normal and Logistic distributions with order α = 0.5
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Figure 11. Distributed order communicability matrix of NACE sector 4759 with respect to
Normal and Logistic distributions with order α = 0.5
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Figure 12. Distributed order communicability matrix of NACE sector 4941 with respect to
Normal and Logistic distributions with order α = 0.5
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Figure 13. Distributed order communicability matrix of NACE sector 4942 with respect to
Normal and Logistic distributions with order α = 0.5
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Figure 14. Distributed order communicability matrix of NACE sector 5110 with respect to
Normal and Logistic distributions with order α = 0.5
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Figure 15. Distributed order communicability matrix of NACE sector 5223 with respect to
Normal and Logistic distributions with order α = 0.5
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Figure 16. Distributed order communicability matrix of NACE sector 5510 with respect to
Normal and Logistic distributions with order α = 0.5
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Figure 17. Distributed order communicability matrix of NACE sector 5223 with respect to
Normal and Logistic distributions with order α = 0.5
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Figure 18. Distributed order communicability matrix of NACE sector 5510 with respect to
Normal and Logistic distributions with order α = 0.5
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Figure 19. Distributed order communicability matrix of NACE sector 5610 with respect to
Normal and Logistic distributions with order α = 0.5
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Figure 20. Distributed order communicability matrix of NACE sector 5629 with respect to
Normal and Logistic distributions with order α = 0.5
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Normal Distribution Logistic Distribution
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Figure 21. Distributed order communicability matrix of NACE sector 8010 with respect to
Normal and Logistic distributions with order α = 0.5
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Figure 22. Distributed order communicability matrix of NACE sector 8121 with respect to
Normal and Logistic distributions with order α = 0.5



Hypernetwork approach to determination of occupational accident risks 71

Normal Distribution Logistic Distribution

50 100 150

50

100

150

50 100 150

50

100

150

0

2

5

7

10

12

14

50 100 150

50

100

150

50 100 150

50

100

150

0

2

5

7

10

12

14

Figure 23. Distributed order communicability matrix of NACE sector 8616 with respect to
Normal and Logistic distributions with order α = 0.5
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Figure 24. Distributed order communicability matrix of NACE sector 9605 with respect to
Normal and Logistic distributions with order α = 0.5
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4 Discussion and conclusion

For decision makers and policy makers working on occupational health and safety, how to improve
workers’ safety behavior is a focus. Analyzing the categorical data of workers who had an occupa-
tional accident by using effective mathematical methods other than conventional statistical methods
yields very effective results. In this study, we present a novel mathematical method for the study of
different sectors selected a significant sample of data in work-related accidents occurred in Turkey
between the years 2013-2014 were used.

In order to obtain the network structure of workers who had an occupational accident us-
ing a categorical data set, firstly the data were parameterized. The hyper-network model, where
each parameter corresponds to a hyper-edge, is established with a data set of 18 different sectors.
Topological characterization of the created hyper-networks can be observed in hyper-edge degree
distributions. The resulting hyper-edge degree distributions are quite similar to each other. The
most striking differentiation in terms of hyper-edge degree distributions was observed to be the
“Removal Sector” with 4942 NACE code. When the data of this sector are examined, it is seen
that it differs from the data of other sectors analyzed in the study as an occupational accident
characteristic. Hypergraphs have several simple graph embeddings. The first embedding we use
in this study is the bipartite graph showing the vertices where the hyper-edges match. When we
look at the peak order distributions in the GB bipartite representations of H = (V,E) hyper-graphs
created by different NACE sectors, it is observed that the frequency of the peaks in communication
with each other is high. This density indicates that the GC graphs encoding the communication
characterization of the vertices are complete graphs. Thus, the hypothesis that there are short links
between the occupational accident information of workers working in a sector is realized.

One of the main contribution of this paper is to present a new link-prediction method based
on distributed order fractional derivatives. Distributed order derivatives are fractional derivatives
that have been integrated over the order of the derivative within a given range; that is, the memory
of agents in a system is distributed. As explained before, the institutional regulations can be
considered to be power-law fading memory within a social environment. Hence, as we are predicting
link formation in MST filtration of GC embedding, we assume that evolution of a random walker
on MST is expressed with a type of fractional matrix equation. Furthermore, we give such memory
to random walker to be distributed on MST , then we express such evolution as distributed order
fractional matrix equation. Such distributions are chosen to be normal and logistic distributions for
numerical analysis. The solution of such equation is performed by finite difference scheme. Since
MST is a discrete space for the evolution domain, finite difference scheme is performed respect to
the size of vertex set of MST . In numerical computations, we choose fractional order derivative
to be α = 0.5. For further studies, such order can be chosen in arbitrary and even varying values
to also study diffusion characteristics of random walker. The main goal of link prediction process
is to determine absent links in a graph. The distributed order measure we present shows the most
possible edges tend to be included in MST . As the new edges are included, MST will turn to
be GC . Numerical results show that the highest tendencies are in “Collection of non-hazardous
waste” sector with 3811 NACE code, “Co operative store retail” sector with 4719 NACE code,
and “Retail Sale Of Electrical Household Appliances, Furniture, Lighting Equipment And Other
Household Articles In Specialized Stores.” sector with 4759NACE code for both normal and logistic
distributions of the power-law fading kernel. Moreover, from Figures 5–24, it can be observed that
the distribution of the power-law fading memory do not effect the link prediction values significantly.
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Rather that the similar researches on social network analysis of occupational accidents, we
analyze more than one sector. By introducing this new link prediction method based on distributed
order fractional derivatives, this analyze can be performed on special sectors with bigger data for
further studies.
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Office through Project Grant Number: (19/081/10/1)

References

[1] J. Takala, Global estimates of fatal occupational accidents, Epidemiology 10(5) (1999) 640–646.

[2] B.Y. Jeong, Characteristics of occupational accidents in the manufacturing industry of South
Korea, International journal of industrial ergonomics 20(4) (1997) 301–306.

[3] C.W. Cheng, S.S. Leu, C.C. Lin, and C. Fan, Characteristic analysis of occupational accidents
at small construction enterprises, Safety Science 48(6) (2010) 698–707.

[4] K. Suzuki, T. Ohida, Y. Kaneita, E. Yokoyama, T. Miyake, S. Harano, Y. Yagi, E. Ibuka,
A. Kaneko, T. Tsutsui and M. Uchiyama, Mental health status, shift work, and occupational
accidents among hospital nurses in Japan, Journal of occupational health, 46(6) (2004) 448–
454.
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[32] M. A. Balcı, S.P. Atmaca and Ö. Akgüller, Hyperpath Centers, In Advanced Computational
Methods for Knowledge Engineering (2016) 129–137.

[33] P.V. Marsden, Egocentric and sociocentric measures of network centrality, Social networks
24(4) (2002) 407–422.

[34] S.P. Borgatti, Centrality and network flow, Social networks 27(1) (2005) 55–71.

[35] N.E. Friedkin, Theoretical foundations for centrality measures, American journal of Sociology
96(6) (1991) 1478–1504.

[36] E. Estrada and N. Hatano, Communicability in complex networks, Physical Review E 77(3)
(2008) 036111.

[37] E. Estrada, D.J. Higham and N. Hatano, Communicability betweenness in complex networks,
Physica A: Statistical Mechanics and its Applications 388(5) (2009) 764–774.

[38] J.T. Katsikadelis, Numerical solution of distributed order fractional differential equations, Jour-
nal of Computational Physics 259 (2014) 11–22.

[39] S. Mashayekhi and M. Razzaghi, Numerical solution of distributed order fractional differential
equations by hybrid functions, Journal of Computational Physics 315 (2016) 169–181.

[40] G.H. Gao, H.W. Sun and Z.Z. Sun, Some high-order difference schemes for the distributed-order
differential equations, Journal of Computational Physics 298 (2015) 337–359.

[41] J. Li, F. Liu, L. Feng and I. Turner, A novel finite volume method for the Riesz space distributed-
order advectiondiffusion equation, Applied Mathematical Modelling 46 (2017) 536–553.



76 M.A. Balcı, Ö. Akgüller
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